Preview:
The fatigue limit: An analytical solution to a Monte Carlo problem

UTMIS
11th February 2013
Svedalen, Sweden

Ali Cetin
PhD Candidate
Department of Engineering Design and Materials
NTNU
Motivation & Outline

Probabilistic models

Weibull type models:
- Black box
- Pragmatic
- Simple Application

Hybrid models:
- General
- Simple Application

Monte Carlo:
- Explicit – White box - Physical
- Very specific – No generality
- Input issues
- Computer Simulations

Hybrid models: Best of both worlds?
Hybrid models: Cost of generality?

- Are significant features and processes being neglected in the name of generality?

My opinion: Probably...
Motivation & Outline

Motivation:
Discard excessive generality
Extend the limits of hybrid models

Our model:
Analytical solution to a Monte Carlo problem
Analytical solution to a Monte Carlo problem

“It is more important to have beauty in one's equations than to have them fit experiment.”

Paul Dirac
Definition of the Monte Carlo Problem

General hypothesis:

The fatigue limit is a process controlled by the most severe defect present in a component.
Definition of the Monte Carlo Problem – cont’d

- Materials contain discrete defects with random sizes and spatial location.
- The defects are «virtually» spherical in shape.
- The defect sizes are log-normal distributed.
- The defect-stress relationship is defined by the $\sqrt{\text{area}}$ model (Murakami).
Definition of the Monte Carlo Problem – cont’d

Log-Normal distribution: Why?

- Physically sound
- Mathematically attractive
- Often used to describe defects
Definition of the Monte Carlo Problem – cont’d

The correct approach should be:

Log-Normal distribution: Why not?
Definition of the Monte Carlo Problem – cont’d

“Surface” defects!
The Model

Probability of failure

\[F_{FL}(S_\Lambda) = 1 - \exp \left\{ - \left(\frac{\rho}{2} \int_V \text{erfc} \left(\frac{\mu_S - \ln s}{\sqrt{2} \nu_S} \right) \, dV + \frac{\rho S}{2} \int_M \int_{-1}^1 \text{erfc} \left(\frac{\nu_S - \frac{h(u)}{6} + \ln \frac{1.43}{1.56}}{\sqrt{2} \nu_S} - \ln s \right) \, du \, dM \right) \right\} \]

Model parameters

Stochastic behavior – Estimation from data:
\(\mu_S, \nu_S \)

Material properties – Obtainable / Guessable:
\(H_V, \rho \)

Load case - Known:
\(R, \alpha \)

Only 2 fitting parameters
Example Application

Böhm data: 30CrNiMo8 steel
3 smooth and 8 notched specimen
Example Application

Material properties
\(R_{p0.2} = 770 - 828 \text{MPa} \)
\(R_m = 898 - 966 \text{MPa} \)
Cyclic softening

Model parameters:
\(H_V = 290 \)
\(\rho = 25 \text{ defects per } mm^3 \)
\(R = -1 \)

\(\mu_S \) and \(\nu_S \) estimated from one of the smooth specimen
(Fully reversed, tension-compression)
Results

Success criteria: less than 15% error

Training specimen

![Graph showing SA - The fatigue limit with Predicted (MPa) on the y-axis and Experimental (MPa) on the x-axis. The graph includes a trend line and data points labeled "Training".]
Results

Success criteria: less than 15% error

Training specimen + smooth specimen
Results

Success criteria: less than 15% error

Training specimen + smooth specimen + notched specimen
Results

Success criteria: less than 15% error

Training specimen + smooth specimen + notched specimen
Failed predictions?

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Kt</th>
<th>Relative stress gradient</th>
<th>Exp. S_A</th>
<th>Exp. local peak</th>
<th>Predicted S_A</th>
<th>Predicted local peak</th>
<th>Error %</th>
</tr>
</thead>
<tbody>
<tr>
<td>X3</td>
<td>1.0</td>
<td>0.0</td>
<td>385.4</td>
<td>385.4</td>
<td>376.9</td>
<td>376.9</td>
<td>-2.2</td>
</tr>
<tr>
<td>X2</td>
<td>1.0</td>
<td>0.0</td>
<td>396.7</td>
<td>396.7</td>
<td>397.7</td>
<td>397.7</td>
<td>0.3</td>
</tr>
<tr>
<td>Z5</td>
<td>5.8</td>
<td>1.6</td>
<td>79.6</td>
<td>461.7</td>
<td>71.1</td>
<td>412.4</td>
<td>-10.7</td>
</tr>
<tr>
<td>X1</td>
<td>1.0</td>
<td>0.0</td>
<td>463.6</td>
<td>463.6</td>
<td>459.4</td>
<td>459.4</td>
<td>-0.9</td>
</tr>
<tr>
<td>Y3</td>
<td>2.2</td>
<td>0.4</td>
<td>224.3</td>
<td>493.5</td>
<td>208.5</td>
<td>458.7</td>
<td>-7.0</td>
</tr>
<tr>
<td>Y2</td>
<td>2.2</td>
<td>0.7</td>
<td>232.0</td>
<td>510.4</td>
<td>251.2</td>
<td>552.6</td>
<td>8.3</td>
</tr>
<tr>
<td>Z4</td>
<td>6.0</td>
<td>2.3</td>
<td>87.8</td>
<td>526.8</td>
<td>86.6</td>
<td>519.6</td>
<td>-1.4</td>
</tr>
<tr>
<td>Y1</td>
<td>2.2</td>
<td>2.2</td>
<td>249.1</td>
<td>548.0</td>
<td>372.4</td>
<td>819.3</td>
<td>49.5</td>
</tr>
<tr>
<td>Z3</td>
<td>5.7</td>
<td>3.3</td>
<td>97.3</td>
<td>554.6</td>
<td>123.3</td>
<td>702.8</td>
<td>26.7</td>
</tr>
<tr>
<td>Z2</td>
<td>5.6</td>
<td>5.9</td>
<td>103.2</td>
<td>577.9</td>
<td>140.9</td>
<td>789.0</td>
<td>36.5</td>
</tr>
<tr>
<td>Z1</td>
<td>5.0</td>
<td>13.3</td>
<td>127.0</td>
<td>635.0</td>
<td>196.3</td>
<td>981.5</td>
<td>54.6</td>
</tr>
</tbody>
</table>

Failed when it is suppose to fail!
Conclusion

• A robust and transparent probabilistic model is proposed

• The model is physically based

• Initial tests of performance are very promising